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SUMMARY

The effects of Reynolds number on the physiological-type of laminar pulsatile flow fields within the
vicinity of mechanical ring-type constriction in small pipes were studied numerically. The parameters
considered are: the Reynolds number (Re) in the range of 50–1500; Strouhal number (St) in the range
of 0.00156–3.98; Womersley number (Nw) from 0.0 to 50.0. The pulsatile flows considered were
physiological-type of simulated flows. Within a pulsating cycle, detailed flow characteristics were studied
through the pulsating contours of streamline (c), vorticity (V), shear stress (t) and isobar. The relations
between the instantaneous flow rate (Q) and instantaneous pressure gradients (dp/dz) are observed to be
elliptic. The relations between the instantaneous flow rate (Q) and pressure loss (Ploss) are quadratic.
Linear relations were observed between the instantaneous flow rate (Q) and the maximum velocity,
maximum vorticity and maximum shear stress. The Reynolds number of the flow in a pulsating cycle was
found to have significant effects on the recirculation length and the pressure gradient within the pulsatile
flow regime. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, pulsatile flows have attracted increased attention due to their uses in the big
engineering related fields. In the study of intracardiac flow and stenosis in blood vessel, the
pressure loss, the maximum flow velocity, shear stress and the recirculation region are
parameters of extreme interest because of their relationship with the atheroma caused by the
large pressure drop across the constriction created through artificial implants, the corpuscle
damage by large shear stress, as well as the thrombus phenomena resulted from the recircula-
tion region [1–7]. However, most of the above studies are for ‘smooth’ sinusoidal profiles or
bell shape constrictions [1,2,8,9]. Few considered ring-type constrictions with sharp edges. An
investigation is carried out here to study the effects of the Reynolds number on the
physiological-type of unsteady flow fields in the vicinity of ring-type constrictions. Unsteady
flow through ring-type constrictions are of interest to the designer of unsteady flow measuring
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devices [8]. The relationship between flow rate and pressure loss across the ring-type constric-
tions provides a mean of estimating the mean flow rate from the measured pressure loss.
Hence, unsteady flow through ring-type constriction is used here as a model for the study of
the application of fluid devices implant in intracardiac flow. A physiological flow and two
experimentally approximated physiological pulsatile flow in a rigid pipe with a ring-type
constriction were selected in the present numerical study. The present investigation focused on
the variation of the pressure gradient along the axial direction, the pressure loss in flow passing
through the constriction, the maximum flow velocity, maximum vorticity and maximum shear
stress, the recirculation length, as well as the centreline velocity profiles in the developing flow.
The results of the ring-type constriction presented here are for d/D=0.5 opening ratio and
h/D=0.1 thickness ratio. The mean flow Reynolds number is of the order 50–1500. The flow
Strouhal numbers (St) considered are in the range 0.00156–3.98 with the corresponding
Womersley number (Nw) ranges from 0.0 to 50.0. In the vicinity of the implanted solid
rigid-type constriction, the tube wall can be considered as relatively rigid. Hence, a rigid tube
assumption is made in this study.

2. GOVERNING EQUATIONS AND NUMERICAL PROCEDURES

The dimensionless governing equations for the axisymmetry unsteady incompressible laminar
flow through the ring-type constriction, as shown in Figure 1(a), are given by

Continuity equation:
(
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(ru)+

(

(r
(r6)=0; (1)

Figure 1. pipe with ring-type constriction.
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Figure 2. Three types of pulsatile flow.
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In the solution domain, as shown in Figure 1(a), the upstream inlet velocity conditions are
specified by one of the pulsatile flows [10–12], as shown in Figure 2. At each time step, along
the solid wall, a no-slip velocity condition is specified by u=0, 6=0. Along the central line,
axisymmetric conditions are applied to all variables with (u/(r=0, 6=0, (p/(r=0. At the
downstream exit section, the dimensionless pressure is fixed at zero and the flow is considered
to be fully developed, so p=0.0, (u/(z=0 and (6/(z=0.

In a general curvature co-ordinate system (j, h), Equations (1)–(3) can be expressed as:

(G
(t

+
(

(j
(E−M)+

(

(h
(F−N)−S=0, (4)

where

j=j(z, r), h=h(z, r). (5)

The variables (G, E, M, F, N, S) are functions of physical variables (u, 6, p) and the geometri-
cal variables (z, r). They are expressed in details by Jones and Bajura [8] and Marcelo et al. [13]
and will not be repeated here.

The curvilinear velocity components U, V in Equation (4) are related to the Cartesian
velocity components u, 6 in Equations (1)–(3) by

U=uj z+6jr

V=uh z+6hr

. (6)

The time-dependent term in Equation (4) can be expressed as [1,2]

G=
1

2p

(Nw)2

Re
·Jr(0, u, 6)T (7)
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and the Womersley number (Nw) is then considered as a characteristic non-dimensional
parameter of unsteady flow. The relation between the Strouhal number (St) and the Womer-
sley number (Nw) is 
2p Re ·St.

Equation (4) is then solved by an iterative process. All the physical variables (u, 6, p) are
updated through

fn+1=fn+df, (8)

where n and (n+1) are the last and current iteration numbers, and f represents each of the
physical variables. Substituting Equation (8) into Equation (4), the governing equations can be
expressed in incremental form of

(dF
(t

+
(

(j
(dE−dM)+

(

(h
(dF−dN)−dS= −R. (9a)

The residual vector, R, is calculated by using the variable’s value at level n as

R=
(Gn

(t
+
(

(j
(E−M)n+

(

(h
(F−N)n−Sn. (9b)

Equations (9a) and (9b) are solved by the SIMPLE algorithm [14] on a non-staggered grid.
The grid point distribution within the solution domain is shown in Figure 1(b). A stretching
function is used along the axial direction:

dz
dj

=zm[a+b(j−j1)2gj], (10a)

with the boundary conditions given by:

z �j=0=0, z �j=1=zm (10b)

where zm is the maximum length of the solution domain in the axial direction. a and g are two
grid controlling parameters. At point j=j1, the grid size is Dz=zma Dj, which can be
controlled through the value of a. If aB1.0, the grid will become more clustered at point
j=j1. The grid distribution for the z-direction can be further refined through the parameter
g.

With the grid distribution as defined by Equation (10), all terms containing the incremental
variables (dE, dM, dF, dN, dS) are discretized by three-point difference schemes. The hybrid
difference schemes are used for convective terms, the second-order central schemes for diffusive
terms, the first-order forward schemes for pressure terms and backward schemes for continuity
equation. The residual vector is calculated by the second-order difference schemes, which are
the second-order upwind scheme for convective terms, the central schemes for diffusive terms,
the second-order forward schemes for the pressure terms and the second-order backward
schemes for the continuity equations. At convergence, the residual vector (R) is equal to zero,
and the convergent results have the second-order accuracy. For points adjacent to the wall, the
corresponding second-order difference schemes are also used to ensure the consistency of the
scheme accuracy.

For the time-dependent terms, a modified Crank–Nicolson scheme is used to discretize the
governing equations:

dGn+1−dGn

Dt
+u ·Xn+1+ (1−u) ·Xn= −R, (11)
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where X= ((/(j)(dE−dM)+ ((/(h)(dF−dN)−dS and u is a scheme controlling parameter
ranges from 0.0 to 1.0. u=0.0 is for the time explicit scheme, u=1.0 is for the time implicit
scheme, and u=0.5 is for the standard Crank–Nicolson scheme. The optimum u value in the
present numerical computation is determined from numerical experiment to obtain stable and
convergent results. In the present work, u=0.6 is chosen after a series of numerical experimen-
tations. Second-order discretization of pressure gradient terms and the continuity equations are
adjusted according to the instantaneous main flow direction. This numerical scheme was found
to be most accurate and numerically stable for the pulsatile flow problems studied here.

The numerical procedure for the pulsatile flow computation adopted in this study can be
briefly outlined as follows:

1. Steady flow is computed and taken as initial conditions for the unsteady flow computation.
At the advancement of each time step, initial velocity and pressure fields are given by the
converged values of last time step, and boundary values of each variable are specified.

2. The momentum equations are solved by sweeping in the positive and negative redirection
with an underrelaxation procedure. The underrelaxation factor is 0.35. The residual of each
equation is computed. Iteration continued until the residuals of all the equations reduce to
0.1% of their values at the first iteration.

3. The residual of continuity equation is computed and used as the source terms of the
pressure correction equation, which is then solved by the ADI sweeps. The sweep is
repeated until the residual of pressure correction equation reduces to 0.1% of its value at
the first iteration.

4. The flow flux at each section in the z-direction is computed. The maximum equation
residual and maximum flux difference to that at inlet section are obtained. The program
will return to step (2) when the maximum residual or maximum flux difference is greater
than 0.1% of the initial values.

5. At convergence, the streamline, vorticity, shear stress fields are computed from the velocity
field. Information about pressure is obtained from pressure field.

3. RESULTS AND DISCUSSIONS

For the computation of flow field in the pipe with a ring-type constriction, non-uniform grids
were used in the axial z-direction with more grid points being distributed nearer the
constriction as shown in Figure 1(b). For the radial direction and the time domain, computa-
tional grids were evenly distributed. Grids with 15, 21, 31 points in the r-direction and 81, 101,
121, 141 points in the z-direction were tested. Grids with 31, 41 and 51 points per pulsatile
period (T) in the time domain were tested for the first three time periods to check on the grid
point independency on the numerical results obtained. Further computations are then based on
a grid point arrangement of 21, 121, 41 in the r-, z- and t-directions respectively. Monotonic
convergence towards a grid-independent value is also found for all the solutions obtained here.
An estimation of the grid-independent values is made by applying the Richardson extrapola-
tion. Assuming second-order behaviour, the ‘exact’ values of the solution field are obtained
from F=Fh+ [Fh−F2h ]h/3. Where ‘h ’ here denotes the uniform mesh size Dz used within the
transformed domain for the z-direction. Since the convergence errors were kept below 0.01%
in the present solutions, the results of the above extrapolation are assumed to have errors an
order of magnitude lower than the finest grid used in the solution. Computations were carried
out for more than one periodical time cycle for every pulsatile unsteady flow conditions
considered.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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The validity of the numerical procedures and grid size were first verified against available
data for steady laminar flow in two dimensional symmetric sudden expansion and axisymmet-
ric sudden expansion in pipe. For the two-dimensional symmetric expansion flow, Kwon [15]
investigated cases of ReB700, by using 80×32 equally distributed grid points in the x- and

Figure 3. Comparison of results with other investigators.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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Figure 4. (a) and (b) Development of laminar pulsatile flow field at Re=50, Nw=6.98 and St=0.155. (c) and (d) Development of laminar pulsatile flow field at
Re=50, Nw=6.98 and St=0.155. (e) and (f) Development of laminar pulsatile flow field at Re=50, Nw=6.98 and St=0.155.
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Figure 4 (Continued)
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Figure 5. Relation between flow rate and pressure loss (arrows show direction of time increment).

y-directions. Comparison were made between the present results and data from Kwon [15] on
the centreline velocity and wall friction distributions as shown in Figure 3(a). The computed
results compared very well with the results obtained by Kwon [15]. Similar axisymmetric
sudden expansion flow was studied by Napolitano and Cinnella [16] with the Block–Line–
Gauss–Seidal method with 97×193 equally distributed grid points in the r- and z-directions.
The flow Reynolds numbers were in the range of 100–1600. Pollard [17] also studied the
axisymmetric sudden expansion flow for ReB100 by using SIMPLE algorithm of Patankar
with 28×57 non-uniform grids in both r- and z-directions. Similar test results were obtained
in the present study and compared with data available from Pollard [17] and Napolitano and
Cinnella [16] on the recirculation length and the wall shear stress. These are shown in Figure
3(b) and (c). The results show that the present numerical procedure and grid size used produce
results that are accurate and consistent with the known steady laminar flow data. It is thus
assumed here that similar procedure and grid size used for the pulsatile flow should also
produce accurate results for the unsteady laminar flow cases to be considered here.

Following the studies by Coder and Buckley [18] and Durst et al. [19], the flow Reynolds
number is known to have significant effects on the flow field for a given bell-shaped
constriction opening. Investigations are then focused here on the effects of the Reynolds
number on the flow field and the maximum values of velocity (Vmax), vorticity (Vmax), shear

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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stress (tmax), as well as the pressure loss (Ploss) across the ring-type constriction, the recircula-
tion length (zr/D). These parameters are of practical interest due to their relations with the
big-mechanical study and the design of fluid devices implant in intracardiac flow. In the
present study, the flow Reynolds number varies from 50 to 200. The opening ratio is fixed at
0.5 and thickness ratio fixed at 0.1. Three types of physiological-type pulsatile flow, as
described in Figure 2, are computed with the flow Reynolds number in the range of 50–1500
for different Strouhal numbers and Womersley numbers.

The typical pulsatile flow fields de6elopment are shown in a series of time development flows
in Figure 4. It shows the developments of the streamline field, the vorticity field, the
distributions of shear stress and isobars. It should be noted here that when t/T advances from
0.0 to 10/65, forward flow is accelerated to the peak flow velocity. The recirculation length
(zr/D) increases from its steady flow value to a maximum value. As t/T further advances from
10/65 to 20/65, forward flow is decelerated back towards its minimum value and the zr/D value
decreases to its minimum value correspondingly. During t/T advances from 21/65 to 50/65, the
flow is under small backward velocity period with QB0.18. At t/T varying from 50/65 to 1.0,
the second cycle starts and the flow field repeats the same structure as previous cycle.

The above streamlines also show that the recirculation region in the unsteady flow domain
is not stationary. For the duration where the instantaneous bulk velocity of the flow field is
very small, the recirculation region in the flow domain is negligible. For the physiological-type
of pulsatile flows investigated, flow acceleration and deceleration are of the same magnitude at
the same instantaneous flow rate (Q). However, as shown in Figure 4, through the develop-

Figure 6. Relation between flow rate and axial pressure gradient (arrows show direction of time increment).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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Figure 7. Relation between flow rate and maximum vorticity.

ment of the streamlines with the development of the recirculation region, it is noted that during
the deceleration phases, the flow field results in larger recirculation length. The relationship
between the maximum recirculation length and the Reynolds number is given by:

zr/D+0.0415Re.

However, in practice as Re��, the flow becomes turbulent. Hence, the above expression is
only valid at low Reynolds number laminar flow. Figure 4 also shows that the maximum shear
stress is located around the tip of constriction. In the region close to the constriction, the
pressure, velocity have their large gradient in both r- and z-directions.

The relationship between flow rate and pressure loss, axial pressure gradient are non-linear.
As shown in Figure 5, during the acceleration phases Ploss is larger when compared with the
values of Ploss during the deceleration phases. The differences in the Ploss values can be as high
as 3.0. One factor that causes this difference is the different magnitudes of acceleration and
deceleration as shown by the characteristics of the pulsatile flows in Figure 2. The relationship
between the flow rate and the axial pressure gradient in the fully developed flow region is
presented in Figure 6 for the physiological flow at Re=50, 300, 800 and for the pulsatile flow
at Re=500, 800 and 1500. It is noted that at the instant of maximum flow rate, the pressure
gradient is small. The pressure gradient has its maximum value at the instant where the flow
rate is approximately half of the maximum flow rate. The phase angle between the Q and
dp/dz is about 80°.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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Figure 7 shows the relationship between the flow rate and the maximum 6orticity. The data
on the physiological flow and the No. 2 experimental pulsatile flow can be approximated by
a linear relationship of the form:

Vmax=170Q.

The above relationship remains unchanged for all the Reynolds numbers from 50 to 1500.
The numerical results on the maximum shear stress of the whole flow field are presented in

Figure 8. The linear relationship can be expressed as an function of the form:

tmax·Re=106Q.

The maximum wall shear stress (tw,max) is not simply linked with the flow rate. This is shown
in Figure 9. The tw,max value is about 1/4 of the tmax value. Referring to Figure 4(b), the
maximum shear stress occurs at the tip region of constriction, while the maximum wall shear
stress is along the pipe wall. The flow field around the tip of the constriction is mainly
determined by the constriction geometry. The flow structure adjacent to the wall depends on
the recirculation size, the pulsatile Reynolds number that affects the instant velocity profiles as
shown in Figure 4. Hence, the maximum wall shear stress is not related to the flow rate in a
simple manner.

The maximum 6elocity of the whole flow field has different relationships with the flow rate
for the acceleration and deceleration period, as shown in Figure 10. The starting point for the

Figure 8. Relation between flow rate and maximum shear stress.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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Figure 9. Relation between flow rate and maximum wall shear stress.

calculation is a stationary flow, i.e. Vmax=0.0 at t/T=0.0. The maximum velocity becomes
large with the flow rate increase, and never equal to zero again. Approximately, the relation-
ships can be expressed as:

Vmax=7.32Q−1.0 at acceleration

and

Vmax=3.82Q−3.5 at deceleration.

As shown in the velocity profiles of Figure 2, the flow is never stationary in the pipe even at
the instantaneous Q=0.0 for the pulsatile flow considered. The relation between the flow rate
and maximum velocity is no longer linear.

At Re=50 and 500, St=0.155, comparisons among these three types of pulsatile flow are
presented in Figures 11 and 12. Results of maximum values of shear stress, vorticity, velocity,
and the recirculation length, pressure loss and axial pressure gradient are compared. These
three types of laminar pulsatile flow have the same flow property. Hence, in 6itro investigation
of physiological laminar flow phenomena, the various types of experimental flow shown here
are suitable for use in the investigations.

It is noted that in some of the cases considered above, the transient breakdown of laminar
flow may appear, even though the maximum Reynolds number is below the critical value for
steady flow. It depends on the frequency and velocity amplitude [20]. It is more pronounced
in the case of flow in pipe with constriction. It is dependence on the constriction opening d/D

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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and the constriction thickness h/D. The present study used a Reynolds number Re=1500 as
the limiting cases but did not touch on the breakdown problems. Through a separate study by
the authors with sinusoidal pulsatile flows [20], it was shown that for Reynolds number less
than 1500, the flow characteristics is predominantly laminar in nature. Hence, transitional
breakdown into turbulent flow can be neglected in the present study.

4. CONCLUSIONS

The effects of the flow Reynolds number in physiological-type pulsatile flow fields through a
sharp edge ring-type constriction were investigated for flow Reynold number in the range of
50–1500, Nw from 0.0 to 50.0 and St from 0.0 to 3.98. In 6itro investigation of physiological
laminar flow phenomena through the ring-type constriction showed that the three types of
experimental flows investigated here are suitable. Numerical experimentations show that flow
deceleration in the pulsatile cycles tends to enlarge the recirculation region and its effect
becomes more significant with the increase of the Reynolds number of the net forward flow of
the physiological type of pulsatile flow. The corresponding flow acceleration in the pulsatile
cycles tends to increase the pressure drop in the pipe flow. Other more specific flow
characteristics are also observed. The relationship between the instantaneous flow rate and the
pressure loss across the constriction is quadratic. However, the relationship between instanta-
neous flow rate and pressure gradient is elliptic. The time-averaged pressure gradient along the
axial direction trend towards a stationary value when the flow is increase to the maximum

Figure 10. Relation between flow rate and maximum velocity (arrows show direction of time increment).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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value in a cycle of the pulsatile flow. Other linear relations exist between the flow rate and the
maximum velocity, maximum vorticity and maximum shear stress within the pulsatile flow
field.
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APPENDIX A. NOMENCLATURE

pulsatile amplitudea
A pulsatile amplitude, A=a/D
d orifice diameter

upstream pipe diameterD1

downstream pipe diameterD2

pipe diameter (characteristic length)D
dp/dz pressure gradient in axial direction
dp/dz time-averaged pressure gradient, 1/T 	T dp/dz dt

constriction thicknessh
Womersley number, Nw=
v/nNw
pressurep

Ploss pressure loss across constriction
DP pressure difference between upstream and downstream flow

time-averaged pressure loss, 1/T 	T Ploss dtP( loss

flow rate, Q=Q(t)= (p/4)D2ū(t)Q
maximum flow rate=1.0Qmax

r radial co-ordinate, radial distance
Reynolds number, Re=UD/nRe
Strouhal number St=D/(ūpeak) or St= (1/2p)(Nw2/Re)St

t time co-ordinate, time step
Ts time period of sinusoidal flow

time period of physiological flowT
u axial velocity component
ū(t) instantaneous bulk velocity in pipe

the peak ūpeak value (characteristic velocity)ūpeak

U net forward velocity in a cycle, U=	T Q(t) dt/(cross section area)
radial velocity component6

z axial co-ordinate, axial distance
zr recirculation length

Greek letters

ap underrelaxation factor in updating the pressure
density of fluidr

n fluid molecular kinetic viscosity

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 743–761 (1999)
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t shear stress t= (1/Re)(((u/(r)+((6/(z))
co-ordinate variables in general curvature co-ordinatej, h

V vorticity, V= ((u/(r)−((6/(z)
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